
AVR Interrupts programming in C

Kizito NKURIKIYEYEZU, Ph.D.

Steps in executing an interrupt
Upon activation of an interrupt, the microcontroller goes through the following steps:

It finishes the instruction it is currently executing and saves the address of the
next instruction (program counter) on the stack.

It jumps to a fixed location in memory called the interrupt vector table. The
interrupt vector table directs the microcontroller to the address of the interrupt
service routine (ISR).
The microcontroller starts to execute the interrupt service subroutine until it
reaches the last instruction of the subroutine, which is RETI (return from
interrupt).
Upon executing the RETI instruction, the microcontroller returns to the place
where it was interrupted. First, it gets the program counter (PC) address from
the stack by popping the top bytes of the stack into the PC. Then it starts to
execute from that address.

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts programming in C October 24, 2022 1 / 7

Steps in executing an interrupt
Upon activation of an interrupt, the microcontroller goes through the following steps:

It finishes the instruction it is currently executing and saves the address of the
next instruction (program counter) on the stack.
It jumps to a fixed location in memory called the interrupt vector table. The
interrupt vector table directs the microcontroller to the address of the interrupt
service routine (ISR).

The microcontroller starts to execute the interrupt service subroutine until it
reaches the last instruction of the subroutine, which is RETI (return from
interrupt).
Upon executing the RETI instruction, the microcontroller returns to the place
where it was interrupted. First, it gets the program counter (PC) address from
the stack by popping the top bytes of the stack into the PC. Then it starts to
execute from that address.

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts programming in C October 24, 2022 1 / 7

Steps in executing an interrupt
Upon activation of an interrupt, the microcontroller goes through the following steps:

It finishes the instruction it is currently executing and saves the address of the
next instruction (program counter) on the stack.
It jumps to a fixed location in memory called the interrupt vector table. The
interrupt vector table directs the microcontroller to the address of the interrupt
service routine (ISR).
The microcontroller starts to execute the interrupt service subroutine until it
reaches the last instruction of the subroutine, which is RETI (return from
interrupt).

Upon executing the RETI instruction, the microcontroller returns to the place
where it was interrupted. First, it gets the program counter (PC) address from
the stack by popping the top bytes of the stack into the PC. Then it starts to
execute from that address.

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts programming in C October 24, 2022 1 / 7



Steps in executing an interrupt
Upon activation of an interrupt, the microcontroller goes through the following steps:

It finishes the instruction it is currently executing and saves the address of the
next instruction (program counter) on the stack.
It jumps to a fixed location in memory called the interrupt vector table. The
interrupt vector table directs the microcontroller to the address of the interrupt
service routine (ISR).
The microcontroller starts to execute the interrupt service subroutine until it
reaches the last instruction of the subroutine, which is RETI (return from
interrupt).
Upon executing the RETI instruction, the microcontroller returns to the place
where it was interrupted. First, it gets the program counter (PC) address from
the stack by popping the top bytes of the stack into the PC. Then it starts to
execute from that address.

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts programming in C October 24, 2022 1 / 7

Enabling and disabling an interrupt
Upon reset, all interrupts are disabled (masked), meaning that none will be
responded to by the microcontroller if they are activated.
The interrupts must be enabled (unmasked) by software in order for the
microcontroller to respond to them.
The D7 bit of the SREG (Status Register) register is responsible for enabling
and disabling the interrupts globally
The CLI (Clear Interrupt) instruction is designed to disable (e.g., I=0) all
interrupts if necessary

FIG 1. Bits of Status Register (SREG)
Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts programming in C October 24, 2022 2 / 7

How to enable an interrupt
1 Step 1—Bit D7 (I) of the SREG register must be set to HIGH to allow the

interrupts to happen. This is done with the SEI (Set Interrupt) instruction.
2 If I = 1, each interrupt is enabled by setting to HIGH the interrupt enable (IE)

flag bit for that interrupt. This is done through the the Timer/Counter Interrupt
Mask Register (TIMSK)1 2 3 4

FIG 2. Timer Interrupt Mask Register (TIMSK)

1See summary at https://web.ics.purdue.edu/˜jricha14/Timer_Stuff/TIMSK.htm
2These bits, along with the I bit, must be set high for an interrupt to be responded to.
3Upon activation of the interrupt, the I bit is cleared by the AVR itself to make sure another

interrupt cannot interrupt the microcontroller while it is servicing the current one.
4At the end of the ISR, the RETI instruction will make I = 1 to allow another interrupt to come in.
Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts programming in C October 24, 2022 3 / 7

The TIMSK register
Bit 0: TOIE0—Timer/Counter0 Overflow Interrupt Enable. When the TOIE0 bit
is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter0
Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e. when the TOV0 bit is set in the
Timer/Counter Interrupt Flag Register - TIFR.

0—Disables Timer0 overflow interrupt
1—Enables Timer0 overflow interrupt

Bit 1: OCIE0 —Timer0 output compare match interrupt enable
0—Disables Timer0 compare match interrupt
1—Enables Timer0 compare match interrupt

Bit 2: TOIE1 —Timer1 overflow interrupt enable
0—Disables Timer1 overflow interrupt
1—Enables Timer1 overflow interrupt

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts programming in C October 24, 2022 4 / 7

https://web.ics.purdue.edu/~jricha14/Timer_Stuff/TIMSK.htm


The TIMSK register
Bit 0: TOIE0—Timer/Counter0 Overflow Interrupt Enable. When the TOIE0 bit
is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter0
Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e. when the TOV0 bit is set in the
Timer/Counter Interrupt Flag Register - TIFR.

0—Disables Timer0 overflow interrupt
1—Enables Timer0 overflow interrupt

Bit 1: OCIE0 —Timer0 output compare match interrupt enable
0—Disables Timer0 compare match interrupt
1—Enables Timer0 compare match interrupt

Bit 2: TOIE1 —Timer1 overflow interrupt enable
0—Disables Timer1 overflow interrupt
1—Enables Timer1 overflow interrupt

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts programming in C October 24, 2022 4 / 7

The TIMSK register
Bit 0: TOIE0—Timer/Counter0 Overflow Interrupt Enable. When the TOIE0 bit
is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter0
Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e. when the TOV0 bit is set in the
Timer/Counter Interrupt Flag Register - TIFR.

0—Disables Timer0 overflow interrupt
1—Enables Timer0 overflow interrupt

Bit 1: OCIE0 —Timer0 output compare match interrupt enable
0—Disables Timer0 compare match interrupt
1—Enables Timer0 compare match interrupt

Bit 2: TOIE1 —Timer1 overflow interrupt enable
0—Disables Timer1 overflow interrupt
1—Enables Timer1 overflow interrupt

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts programming in C October 24, 2022 4 / 7

The TIMSK register
Bit 3: OCIE1B Timer1 output compare B match interrupt enable

0—Disables Timer1 compare B match interrupt
1—Enables Timer1 compare B match interrupt

Bit 4: OCIE1A Timer1 output compare A match interrupt enable
0—Disables Timer1 compare A match interrupt
1—Enables Timer1 compare A match interrupt

Bit 5 TICIE1 Timer1 input capture interrupt enable
0—Disables Timer1 input capture interrupt
1—Enables Timer1 input capture interrupt

Bit 6 TOIE2 Timer2 overflow interrupt enable
0—Disables Timer2 overflow interrupt
1—Enables Timer2 overflow interrupt

Bit 7: OCIE2 Timer2 output compare match interrupt enable
0—Disables Timer2 compare match interrupt
1—Enables Timer2 compare match interrupt

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts programming in C October 24, 2022 5 / 7

Steps to program an interrupt in C
To program an interrupt, 5 steps are required:

Include header file avr\interrupt.h
Use C macro ISR() to define the interrupt handler and update the Interrupt
Vector Table
Enable the specific Interrupt
Configure details of the interrupt by setting relevant registers.
Enable the interrupt subsystem globally using sei().
Define ISR—To write an ISR (interrupt service routine) for an interrupt we use
the following structure5:

1 ISR(interrupt vector name)
2 {
3 //Here goes the code for the ISR
4 }

LISTING 1: Interrupt service routine structure

5The name of the ISR to use is found in the datasheet and the header file of the MCU
Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts programming in C October 24, 2022 6 / 7



1 #include<avr/io.h>
2 #include<avr/interrupt.h>
3 #define F_CPU (1000000UL * 16UL) //16MHz clock
4 ISR (TIMER1_OVF_vect){
5 PORTD ^= (1 << PD0);
6 TCNT1 = 63974; // for 100ms at 16 MHz
7 }
8 int main(){
9 DDRD = (1 << PD0);

10 TCNT1 = 63974; // for 100ms at 16 MHz
11 TCCR1A = 0x00;
12 TCCR1B = (1<<CS10)|(1<<CS12); // Timer mode with 1024 prescler
13 TIMSK = (1 << TOIE1); // Enable timer1 overflow interrupt
14 sei(); // Enable global interrupts
15 while(1){/*Do nothing here! Everything is done via the ISR*/}
16 }

LISTING 2: Example—Blink an LED with an ISR

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts programming in C October 24, 2022 7 / 7

The end


